BRAILLO 650 SF

User's Guide

TABLE OF CONTENTS

1. PRINTER BASICS 6
2. INSTALLATION 8
2.1 Unpacking 9
2.2 Removing the Printer cover 10
2.3 Removing the transport locks 12
2.4 Paper roll feeder - assembly 13
2.5 Compressed air 15
2.6 Connecting the compressed air 16
2.7 Connecting the units together 17
2.8 Connecting the Printer to the mains and computer 20
2.9 Placing the units 21
2.10 Aligning the Staple and Fold with the Printer 22
2.11 Adjusting the Staple and Fold unit sideways 23
2.12 Adjust to paper width, inserting paper 24
2.13 Printing with the B650 SF 27
3. OPERATING THE PRINTER 30
3.1 Operating panels 30
3.2 Functions Printer operating panel 31
3.3 Overview of menu structure 35
3.4 Explanation of the different menu choices 36
3.5 Messages/Error messages on the Printer operator panel 43
3.6 Test print 47
3.7 Functions Staple and Fold operating panel 48
3.8 Messages in the Staple and Fold display 49
3.9 Signal tower 50
4. SERVICE AND MAINTENANCE 51
4.1 Printing principle 51
4.2 Troubleshooting, incorrect Braille 57
4.3 Magnet rack - Removal 62
4.4 Magnet rack - Disassembly, step by step 63
4.5 Magnet - Replacement 65
4.6 Magnet rack - Cleaning 68
4.7 Magnet rack - Adjustment 69
4.8 Magnet rack - Refitting and adjusting. 71
4.9 Beam and paper shoes - Overview 77
4.10 Beam and paper shoes - Removal and refitting. 78
4.11 Beam - Replacement of short pivot arm 80
4.12 Beam - Replacement of printing pins 81
4.13 Return spring - Adjustment 82
4.14 Eccentrics adjustment - Belt tension 83
4.15 Beam wheel sensor - Adjustment 84
4.16 Paper shoes - Adjustment 85
4.17 Inductive sensors - Adjustment 86
4.18 Paper sensor - Replacing 87
4.19 Maintenance 88
5. PARTS - EXPLODED VIEWS 90
5.1 Magnet rack 90
5.2 Beam 91
5.3 Paper shoe 92
5.4 Paper feeder 93
5.5 Shafts, belt 94
5.6 Top and bottom frame 96
5.7 Paper cutter 98
6. TECHNICAL SPECIFICATIONS 101
6.1 Technical specifications 101
6.2 Electric unit Printer - Overview 102
6.3 How to replace fuses 103
6.4 Main board - Connections 105
6.5 Escape-sequences 106
7. PAPER CUTTER / STAPLE AND FOLD 110
7.1 Description of functions 111
7.2 Paper cutter - Adjustment 112
7.3 Paper cutter 114
7.4 Scrap paper hatch 115
7.5 Picking paper 116
7.6 Vacuum 117
7.7 Sheet splitter 118
7.8 Stack holders 119
7.9 Staple anvil 120
7.10 Folding 121
7.11 Stapling 122
7.12 Trap door 123
7.13 Eject 124
7.14 Valve ramp 125
7.15 Complete schematic pneumatic 126
7.16 Components in the control unit 127
7.17 Schematic, electrical 230V 128
7.18 Connection to Printer, schematic 129
7.19 Schematic PLC 130
7.20 Schematic signal tower 131
7.21 Schematic sensors 132
7.22 Schematic staplers position 136
7.23 Schematic pneumatic valves 136
7.24 Reference position on the vacuum arm 137
7.25 Staplers 139
8. PAPER ROLL FEEDER 140
8.1 Setting up - Connections 140
8.2 Operating 141
8.3 Replacement of the paper roll 142
8.4 Service and maintenance 143
8.5 Schematic electrical 144
8.6 Measurements 145
9. GENERAL INFORMATION 146
9.1 Declaration of conformity 146
9.2 Warranty 147
Warranty request form 148
9.3 Addresses and phone numbers 149

1. PRINTER BASICS

Thank you for your purchase of a Braillo 650 SF. Please read this manual carefully before installing and operating this Printer.

Features

Prints interpoint, both sides of the page are printed simultaneously.
Specially designed to print 4 pages/sheet (like e.g. newspapers and magazines).
Prints 650 characters per second.
Self-test system checks the magnets continuously during printing.
Reliable, sturdy construction.
Safety switches will turn the Printer off if someone accidentally opens the cover while printing.
The printed sheets will be stacked and a cover sheet (with both Braille and ink print) can be added.
Then the stack is stapled, folded and ejected.

Printer overview

Please see figure below:
Note that the "right-hand" and "left-hand" side are referred to as if you were standing behind the Printer facing the opening where the paper is inserted into the Printer.

Printer overview, continued

How the paper travels through the machine.

Stack of
printed sheets

Stack of

Printing

2. INSTALLATION

Space:
The minimum space required for the Braillo 650 SF is approximately $\mathbf{6 \times 3} \mathbf{~ m ~ (1 9 . 5 \times 1 0}$ feet) as at least 1.5 m free space is required behind the paper roll feeder (so the paper roll can be replaced) as well as 1 m free space on both sides so that it can be properly operated, cleaned and maintained.

Environment:

Braillo Printers are made to operate continuously and to be reliable for many years. However, sensitive electronic and mechanical parts require a suitable installation environment to ensure long and trouble-free operation. Temperature should be between $15^{\circ}-30^{\circ} \mathrm{C}\left(60^{\circ}-86^{\circ} \mathrm{F}\right)$, and relative humidity between 40 and 60%.
Maintain a clean environment because dust may clog the Printer - especially with high humidity. Too low humidity should also be avoided to prevent electrostatic problems.
Some paper qualities may generate excessive paper dust. This should be removed with a vacuum cleaner and a damp cloth. (About every 50,000 Sheets).

Electrical: Single phase 230 volt ($+/-10 \%$), $50 / 60 \mathrm{~Hz}$, circuit breakers should be min. 10 amps , preferable 16 amps .

Be sure to consult your distributor/supplier for further details concerning the installation site.
Failure to meet the installation requirements may relieve the supplier of any warranty responsibilities.
Side view

Top view

2.1 Unpacking

Unpacking and installation can be done by the user.
After unpacking the Printer, the cover must be removed before lifting the Printer. See chapter 2.2
"Removing the Printer cover".

\triangleAny kind of lifting of the Printer must always be done from the baseboard at the bottom of the Printer, or from the steel frame, and should be done with extreme care.

Make sure that your Braillo Printer has not been damaged in transport. Check if the outer packing is damaged; If so, it is possible that the Printer has also been damaged or scratched. If any damages are found, please contact your distributor or Braillo Norway AS immediately.

Also check that the shipment contains the following items:

1 | Printer | |
| :--- | :--- |
| 1 | Ethernet cable 5 m (shielded) |
| 1 | USB cable 5 m |
| 1 | User's guide B650 SF |
| 1 | Tool kit for service and maintenance |
| | 1 |

1 Paper roll feeder
1 Friction bar / correction roll
1 Shaft, for the paper roll
1 Paper sample
1 Compressor (optional)
1 Staple and Fold unit
If any of these items are missing, please contact your distributor or Braillo Norway AS.

1 Important :

It is very important that the Printer's specified voltage requirement ($230 \mathrm{~V},+/-10 \%$) corresponds with the local power supply available.

If the plug on the mains power cable is to be replaced, note that the yellow/green wire is the grounding (earthing) wire.

THE PRINTER MUST ALWAYS BE CONNECTED TO GROUND!

After all the items are unpacked, we advice that the transport boxes are stored for possible later use.

2.2 Removing the Printer cover

See figures below and on the next pages.
The cover is constructed of an aluminium frame which is fastened with four screws (G) under the baseboard of the Printer, there is one screw in each corner. On this frame the sides, front and back panels are fastened. Some of these panels can be taken off for better access e.g. for smaller repairs or to connect to the electrical unit.

However, if the printer is going to be lifted or moved, and the Printers own wheels cannot be used, the cover must be taken off completely.

It can be done like this:
Disconnect the mains.
Open the panel (A) by turning the seven screws (B) counter clockwise $1 / 4$ of a revolution - use a coin or a screwdriver. Pull out the panel. Place it aside. The same procedure can then be done on the rest of the panels.

See the figure below for details.

- Disconnect the cable to the fans.
- Disconnect the two cables to the operating panel.
- Disconnect the cable to the safety switches in the cover.

Unscrew the four screws (G) (use a 6 mm hex key) and very carefully lift the cover upwards. The Printer can now be moved to the desired location.
Please observe that it is possible to lock the wheels to secure the Printer when it is positioned.

2.3 Removing the transport locks.

\triangle
This Printer has eight transport locks. All eight must be removed before starting the Printer!

There are four between the base plate and the steel frame, and four between the steel frame and the printing mechanism.

Please see figures below:

2.4 Paper roll feeder-assembly

Placing the paper roll

Shaft and paper roll

Insert shaft into paper roll

Ready for mounting

Put the shaft in the centre of the roll, and ensure that the shaft is approximately in the centre sideways. Fasten the shaft. The roll must be placed so that the paper is rolled off at the top. (See figure).

Place the paper roll with the shaft already fastened just behind the Paper Roll Feeder. Lift off the correction roll with the friction bar and set aside. Use the crank to lower the roll lift until the lift is below the shaft in the roll. Move the roll forward, make sure that the shaft is situated just above the notches, while turning the crank to raise the roll lift. Turn the crank until the roll is lifted above the floor. Put the correction roll with the friction bar on top of the paper roll like on the figure below.
Remove and throw away the first rounds of paper on the paper roll (to get rid of e.g. sand, dust and dirt after rolling the paper roll on the floor).

The paper line must go in between the friction bar and the correction roll. Ensure that the friction bar is resting on top of the roll.
Now the paper must go through the feeder rolls. When turned on, the motor will start feeding paper so that it can be inserted into the Printer.

The paper sensor is a laser distance sensor, and is using a laser beam to check the distance to the paper. If the distance is long (the paper is close to the floor) feeding speed is slow (or it will stop completely) and if the distance is short, feeding speed is high. This will ensure that there is a constant slack of paper between the Paper Roll Feeder and the Printer.
The paper is clamped between the feeder rolls with a compressed air cylinder. After a short period of stand still, the pressure on the feeder rolls will be released. This is done to prevent deformation of the paper.

2.5 Compressed air

This equipment requires clean, compressed air, minimum 7.0 bar @ $1001 / \mathrm{min}$., and max. temperature $50^{\circ} \mathrm{C}$ to the regulator to function. To make this compressed air, you will need to use some sort of compressor. Regardless of the type and brand of compressor is chosen, there are some important things to remember.

\triangle
First, please read the enclosed instruction manual for the compressor!
There are many different compressors on the market, and this chapter will not deal with a particular compressor, but will discuss the topic more in general. Please see the figure below for an example, but refer to your compressor manual for the specific information.

Normally a compressor have two pressure gauges and a pressure regulator fitted. The first gauge is measuring the tank pressure (before the regulator) and the second gauge is measuring the output pressure (after the regulator).
The pressure at the compressor outlet must be adjusted to approximately seven bar. This can be controlled at the output pressure gauge.

To have long and trouble free operation, the air must be filtered and free from oil and water. When air is compressed in a compressor, the air temperature is rising. So the air entering the tank will be hot. When the air is cooling down, the humidity in the air will condensate inside the tank. So the warmer and more humid the air entering the compressor is, the more water condensates inside the tank. The compressor is lubricated with oil and small amounts of oil may also get into the tank.

This means that the tank must be drained for oil and water on a regular basis.
If the air is supplied from the smaller types of compressors delivered from Braillo Norway AS, it is required to keep the compressor in a similar environment as described for the Printer itself. (Temperature $15-30^{\circ} \mathrm{C}\left(60-86^{\circ} \mathrm{F}\right)$ and rel. humidity 40-60\%).
Basic elements on a compressor:

2.6 Connecting the compressed air

See figures below.
The compressed air from the compressor goes to the filter, regulator and release valve unit on the Paper Roll Feeder. From there it goes to the Printer and to the Staple and Fold unit.
If the power is turned off, or one of the emergency switches has been pushed down, the release valve will shut off and release the pressure of the compressed air on all machines.

From
compressor

2.7 Connecting the units together

NOTE!
Mains voltage must be $230 \mathrm{~V} 50 / 60 \mathrm{~Hz}$!
Always connect the units to ground!

The way the units are connected regarding the 230 V is explained in the figure above. Please note that the emergency switches will turn off the power and air to all machines when they are pushed down. The main switch on the Paper Roll Feeder will also turn everything off.

When power is present, the Printer operator panel will turn the Paper Roll Feeder and the S\&F unit on or off.

Note! The Printer will "fall to sleep" when it has been inactive for 15 min. "Sleep" means that the Printer operator panel will go dark and the PRF an S\&F unit will be turned off.
To turn it on again, you can touch the operator panel, or send a document from the computer.

2.8 Connecting the Printer to the mains and computer.

The mains is connected trough the Paper Roll Feeder for all the units.
Note! If the plug on the mains power cable is to be replaced with one that is compatible with the local electric contact points, observe that the yellow/green wire is the grounding (earthing) wire. Also make sure that you are connecting to $\mathbf{2 3 0 V} \mathbf{5 0 / 6 0 ~ H z}$!

1
 ALWAYS CONNECT THE YELLOW/GREEN WIRE IN THE MAINS CABLE TO GROUND!

Connecting to the computer

This can be done either with USB or with Ethernet.
NB. When using the USB cable its recommended to have the cable plugged into the printer when powering up to avoid connection problems.
However, because of the better functionality on the Ethernet connection, we will recommend to use Ethernet whenever possible.

See figure below.

2.9 Placing the units.

The units should be placed as seen on the figure below:

All units should be aligned so the paper will travel in a straight line

2.10 Aligning the Staple and Fold unit with the Printer

2.11 Adjusting the Staple and Fold unit sideways

Fine adjusting the position horizontally.
It is possible to adjust the S\&F unit a little back and forth to align the paper edge with the paper guides.

First, loosen this

Then, adjust with this

2.12 Adjust to paper width, inserting paper

All these adjustments depend on the width on the paper (paper roll). Cut off a sample sheet to use as a guide for adjustments.
Put the paper roll onto the paper roll feeder and let the paper hang loose towards the Printer.
It is recommended to start with the paper feeder unit in the Printer nearest to the fans, because this will also determine the top margin on the sheet.

The adjustment should be done in this order:

1. Move the feeder unit nearest to the main belt to the desired position. (Note the top margin).
2. Adjust the other feeder unit so the distance between them is equal to the paper width.
3. Put the paper from the paper roll feeder into the Printer, and align the guides placed on the input side.
4. Adjust the width on the guides on the $\mathrm{S} \& \mathrm{~F}$ unit.
5. Adjust the end stop on the cover magazine.

Please see the figures on the following pages.
The numbers below indicate in which order the adjustments should be done.

Paper feeder, adjust width.

Loosen the bolts (A) without taking the bolts out. The two units can now be moved sideways. Note that the unit on the side nearest to the main belt will also determine the top margin. Use a paper sample to find the correct position for the two units. The paper sample should fit exactly in between the two units. Fix the units by tightening the bolts (A).

The position on this
feeder will determine the size of the top margin

Guides on the paper input side.

Before you adjust these two guides, you should do the following: Place the paper into the already adjusted feeder, making sure the paper is aligned correctly. Now adjust the guides against the edges of the paper, this will keep the paper correctly positioned and aligned during printing.

2.13 Printing with the B650 SF.

This Printer is printing interpoint. It also print the text sideways on the paper. This way of printing can create some confusion regarding the different terms used to describe the sheet of paper. Please see the figures below to find the description of the terms Braillo is using.

The Printer will use "4-page" mode, meaning the Printer will print four pages on one sheet of paper.
(Two at each side of the paper). By doing this, it is possible to put the sheets in a stack, then staple and fold in the middle.
This way of printing makes it easy to produce newspapers, magazines and books in Braille.

4-page mode:

The sheet in 4-page mode:

Please see the figures below.
The "Sheet length" is not a length you set directly, but will be a result of the margins and line length settings.

Sheet length $=($ Margin $1+$ Line length + Margin 2$)+($ Margin $2+$ Line length + Margin 1$)$
Sheet height $=$ Paper roll width

Printing in 4-page mode:

The number of pages sent to the Printer in 4-page mode, has to be a number that is possible to divide by four. E.g. a document that contains 7 pages of text, must have one empty page added to get a total of eight pages.

Those eight pages will fit on two sheets. (8 pages divided by $4=2$ sheets).
Next, the text has to be sent to the Printer in the following sequence:
Page 1, 2, 7, 8, 3, 4, 5 and 6 .
To be able to insert cover and Staple and Fold each copy of a document, the Printer also needs a command that will tell how many sheets the document contains. This command is an escape-sequence that must be sent to the Printer in the beginning of the document. This is done by sending the ASCII value no 27, then the letter P, and then the number of sheets.
E.g. in the example above, the command would look like this: escP02
(There is software on the market that will do the formatting automatically).
Here is some physical measurements to consider when adjusting the different settings :
Max. sheet height: 330 mm (13.0 inch) (This is the same as the width of the paper roll).
Max. sheet length: 584 mm (23.0 inch)
Min. sheet length: 417 mm (16.4 inch)
Max. no. of characters per. line: 44 char.
Margins are adjustable from $12.7 \mathrm{~mm}(0.5 \mathrm{inch})$ to 50.8 mm (2.0 inch) in 2.54 mm (0.1 inch) increments.

Note that it is not possible to use all combinations regarding line length and margins. E.g. if you set the line length to 44 characters there is not enough room for wide margins too. So if the Printer receives a document which is formatted outside the limits, the display will let you know.

3. OPERATING THE PRINTER

3.2 Functions Printer operating panel

When the Printer is powered up, you have to press the "Accept" button to make the Printer ready.

Welcome	
Press the accept button to continue	
	Accept button

After pressing "Accept" the window below appears. Please see the explanation on the figure below:

Navigating in the menus.

Move the cursor to the desired sub menu, and then press the accept button.

To change a variable setting.

If a setting can have more than two values, the display will look like below.

To change a setting with just two alternatives.

If a setting can have just two variables, the display will look like this.

The very first time the Printer is powered up, you have to select the Printer model.

Note!
The settings set by the operator panel is the default values. However, when sending a text file from the computer, some parameters for this specific job is sent along with the file. The parameters that comes with the file will be active during the print job. When the job is finished, the settings will return to the default settings.

Operator panel during printing.

Please see the figure below:
Embossing Sheet 1 / 5 means that the Printer are now printing Sheet 1 of a book with 5 sheets in total. Copy 1 / 1 means there will be just one copy.

If you would like to pause a print job, press the "Pause" button. When the Printer is paused, the button will change to "Continue". Press "Continue" to continue with the printing. If you would like to cancel the rest of the print job, press "Reset".

Press this button if you want to continue the print job.

Press this button if you want to cancel the rest of the print job.

The display screen will automativcally lock after a certain amount of time. To unlock press button 1 and then 2.

14:24:39 Thu Aug 92012

Screen locked!

Unlock by pressing the buttons below in order

3.3 Overview of menu structure

3.4 Explanation of the different menu choices

The Paper Layout menu

Main Menu - Paper Layout

Line length:

Main Menu - Paper Layout - Line Length
The line length is the maximum number of characters that you can have on a single Braille line. Normally the line length is set by the software in the computer.

Page margin 1 and 2:

Main Menu - Paper Layout - Page margin 1/2
The margins are adjustable from $12.7 \mathrm{~mm}(0.5 \mathrm{inch})$ to 50.8
 mm (2.0 inch), in 2.54 mm (0.1 inch) increments.
There are two different margins, Margin 1 and Margin 2.
Note that the value on Margin 1 will affect both the "outer" margins. And the value on Margin 2 will affect both the "inner" margins.

Format:

Main Menu - Paper Layout - Format
Selects between Interpoint (dots on both sides of the sheet) and Single sided (dots on just one side of the sheet).

Fold line:

Main Menu - Paper Layout - Fold line

Turn on or off a row of dots in the middle of the four-page sheet. This makes it easier to fold the sheet.

The Service/Diagnostic menu

Main Menu - Warning - Service/Diagnostic
When entering this menu choice, a warning window will appear.
The purpose of this warning is make the user aware that the safety switches on the cover is now disabled. This is done to make it possible to run smaller tests during service.

\trianglePlease take care for the rotating parts!
The Printer may unexpectedly be started by other users!
To make sure you have absolutely control when doing service with the power connected, please disconnect the computer cables (Ethernet and USB).

Print Test Pattern:

Main Menu - Warning - Service/Diagnostic - Warning -
Print Test Pattern

When entering this menu choice, a warning window will appear.
This is to make the user aware that print jobs from the computer will not be printed as long as you are in this sub-menu.

- X pattern.

Will print dots in a x pattern across the sheet, useful when searching for missing dots.

- Full cell, single sided.

Prints all six dots on all characters on one side of the sheet, useful for dot quality tests.

- Full cell, both sides.

Prints all six dots on all characters on both sides of the sheet, useful for testing the paper quality.

- O/Ø pattern.

Prints a test pattern made of dot $1,3,5$ and $2,4,6$, single-sided, useful when searching for extra dots.

Manual Running:

Main Menu - Warning - Service/Diagnostic - Warning -
Manual Running
When entering this menu choice, a warning window will appear.
This is to make the user aware that print jobs from the computer will not be printed as long as you are in this sub-menu.

The function of this menu choice is to activate different
functions manually for troubleshooting purposes.

- Main motor

Use this to manually start and stop the main motor.
(Turn off the S\&F unit with the S\&F switch while testing this to prevent error messages).

- Step motor

Will run the stepping motor forward approximately one sheet.

- Send cutting pulse

Sends a cutting pulse to the paper cutter.

- X pattern without motor

Will activate one and one magnet on the magnet racks.

- Sleep relay

Turn the Sleep relay on or off.

- Alarm relay

Turn the Alarm relay on or off.

- Spare relay

Turn the Spare relay on or off.

View Log:

Main Menu - Warning - Service/Diagnostic - Warning - View Log
The Printer remembers the different events that has happened and will store them in a \log. This \log can be viewed in a list like the figure to the right. If a message is repeated several times, the display will show a line with the text "last message repeated x times".

Use the up and down arrow to scroll the list.
If the "OK" button is shown in green, it is also possible to view some more details about this particular event by pressing the "OK" button.

Test Sensors:

Main Menu - Warning - Service/Diagnostic - Test Sensors
This is a function made for troubleshooting the sensors on the Printer. The "On" or "Off" is indicating the current status of the sensor.

To find out if a sensor is OK, the sensor can be switched on and off physically, and the text in the display will change between "On" and

Test sensors	
Cover open	OFF
Beam wheel	OFF
Paper feed 1	OFF
Paper feed 2	ON
Out of paper	

- Cover open

This is the switches on the side panels on the Printer.

- Beam wheel

This is the sensor fitted on the lower shaft on the Printer.

- Paper feed 1

This is the first sensor on the paper transportation in the Printer.

- Paper feed 2

This is the second sensor on the paper transportation in the Printer.

- Out of paper

This is a sensor that check if there is paper present in the Printer. It's fitted on the paper guide on the input side of the Printer.

Status Software:

Main Menu - Warning - Service/Diagnostic - Status Software A window that will show the Printers current IP address, the MAC address and the Software version.

Printer status
IP address: 172.16.32.153
MAC address:
$00: 50:$ C2:3A:F6:80
Software version: 1214
Upgr. softw.

Clear Magnet Failure:

Main Menu - Warning - Service/Diagnostic - Clear Magnet Failure

This menu choice is normally not visible, but if there has been detected a faulty magnet during printing, a magnet icon will be shown in the "Ready to emboss" window. Now the "Clear Magnet Failure" becomes visible and the magnet icon can be reset.

The Date and Time menu

Date and Time:

Main Menu - Date and Time
Used to change the date and time setting.

- Date

Main Menu - Date and Time - Date
Used to change the date.

- Time

Main Menu - Date and Time - Time
Used to change the time.

The Sound menu

Main Menu - Sound

- Volume

Main Menu - Sound - Volume
Volume setting for beep and speech.

- Pitch

Main Menu - Sound - Pitch

Sets the pitch level for the beep.

- Speech

Main Menu - Sound - Speech
Toggles Speech on or off.

- Beep

Main Menu - Sound - Beep
Toggles Beep on or off.

The Printer Setup menu

Main Menu - Printer Setup
In this menu the basic settings regarding the Printer is set.

Printer model:

Main Menu - Printer Setup - Warning - Printer model
When entering this menu choice, a warning window will appear.
Braillo Norway has a number of different Printer models that can use the same electronics. But the different Printer models have different settings and different functions. This menu choice is where you select the specific Printer model. The software will then be adapted to the Printer in use.

This setting is fixed at the factory, and should under normal conditions should never be changed.
However, if for some reason the main board on the Printer has been replaced, this menu will appear on the first power up.

Printer ID:

Main Menu - Printer Setup - Printer ID
The Printer has a function to make it possible to identify which Printer has printed a particular Braille book. It is done by sending a command along with the Braille book that tells the Printer to print it's identification. On this setting you can set a 5 character code or name that identifies this particular Printer.

Step motor current:

Main Menu - Printer Setup - Step motor current
It is possible to adjust the current on the step motor (paper feed motor) from 0 to 11 . The motors torque will be proportional to this value. The default setting is 6 . Should not need to be changed.

Sheet calibration:

Main Menu - Printer Setup - Sheet calibration
This is a function that makes it possible to make small adjustments on the width of the sheet. There is a value that can be set from -10 to +10 . If the value is 0 , there is no correction. Negative numbers will give you a narrower sheet. Positive numbers will give you a wider sheet.

ASCII tables:

Main Menu - Printer Setup - ASCII tables
An ASCII table is the same as a character set. When the Printer receives a character from the computer, it goes to an ASCII table to find out which dot pattern is corresponding to this character.
This Printer has a number of ASCII tables, and they are listed like shown in the figure to the right. To select another table, use the up or down arrow and press the green "OK" button. Now this has become the current table.

It is also possible to view the translation between characters and dots in the different ASCII tables by pressing the "View" button. Then a list like shown on the right will appear. Use the up and down arrows to scroll the list.

GUI style/skin:

Main Menu - Printer Setup - GUI style/skin
If any users of this Printer has low vision and/or find it a bit difficult to read the operator panel, it is possible to change the background and text colours to get better contrasts.

Back light intensity:

Main Menu - Printer Setup - Back light intensity
The back light intensity on the operator panel can be adjusted from 0 to 11 .

Lock screen delay:

Selecting the delay before screen get locked, 0 is screen lock off.

The Counters menu

Main Menu - Counters

Will show two different counters, the first will show the total number of sheets printed. The second shows the total number of hours the main motor has been running.
(The time the Printer has actually printed).

3.5 Messages/Error Messages on the Printer operator panel

Messages/Error Messages on this Printer can be divided into three groups; Messages, Error Messages and unrecoverable Error messages.

Messages:

- Magnet failure

Defect magnets have been detected during printing. If the number of defect magnets is less then 5 , the Printer will continue printing. Please note that Sheet counter 2 has changed to show the number of sheets printed since the failure appeared. If the number of defect magnets is 5 or more, the display will say "General failure, Magnet rack failure" and the Printer will stop. Please check the log for the details. (Main Menu - Warning - Service/Diagnostic - Warning - View Log)

09:35:14 Fri Jan 132012			
Sheet counter 1: 001306 SINCE FAILURE : 000001 々 Ready to emboss			
Fine adj.+			
$\begin{aligned} & \text { Fine } \\ & \text { adj. } \end{aligned}$	Main menu	$\begin{aligned} & \text { Reset } \\ & \text { cnt } \end{aligned}$	Reset cnt 2

To reset the magnet failure message, you have to press the menu choice "Clear Magnet Failure".
(Main Menu - Warning - Service/Diagnostic - Clear Magnet Failure)

- Margins reduced

The line length has been increased so the total sheet size has exceeded its maximum size. (585 mm) This is automatic corrected by reducing the margins accordingly. Please check the Page margin 1 and 2 settings. (Main Menu - Paper Layout - Page margin 1/2)

- Margins increased

The line length has been decreased so the total sheet size is reduced to under its minimum size. (417 mm) This is automatic corrected by increasing the margins accordingly. Please check the Page margin 1 and 2 settings. (Main Menu - Paper Layout - Page margin 1/2)

Recoverable errors:

When there is a recoverable error, the display will show what has happened e. g. "Printer halted, Printer cover open". And it will stay like that until the error is fixed. Then the display will change to "Printer halted, Press continue to resume". By pressing "Continue" the Printer will resume the printing from where it was before.

The different recoverable errors are:

- Printer cover open

This occurs when one or more side panels on the Printer cover are open. When the side panels are put back in place, the display will change to "Press continue to resume".

- Press continue to resume

- Out of paper

The Printer has run out of paper and are waiting for more paper. When more paper is detected, the display will change to "Press continue to resume".

- Paused

The S\&F unit has sent a Pause command, or one of the hatch has been opened during printing. When the Pause command is repealed, the display will change to "Press continue to resume".

- Lost sheet

The vacuum arm on the S\&F unit has lost a sheet of paper. When the problem is solved and the hatches is closed again, the display will change to "Press continue to resume".

- Paper cutter failure

It has been detected a problem in the paper cutter. When the problem is solved and the hatches is closed again, the display will change to "Press continue to resume".

| 14:37:14 Thu Jan 262012 |
| :--- | :--- |
| Sheet counter 1: 000097
 Sheet counter 2: 001496
 Printer halted
 Paper Cutter failure
 Cont.Reser
 Reset
 cnt 2 |

- Book eject

The finished stapled and folded book did not fall down. Open the hatch and push the book down the slide and close the hatch. The display will change to "Press continue to resume".

13:14:54		Thu Jan 262012	
Sheet counter 1: 000048			
Sheet counter 2: 001447			
Printer halted			
Book Eject			
Cont.	-	Reset cnt 1	Reset cnt 2

Unrecoverable errors:

When there is a unrecoverable error, the display will show what has happened e. g. "General failure, Beam wheel failure". When this kind of errors occurs, the Printer must be Reset or switched off and then switched back on again.
The job currently being printed has to be sent once more from the computer. The different unrecoverable errors are:

- Beam wheel failure

This means that the pulses from the Beam wheel sensor is not registered in the electronics. This can be caused by several reasons, e.g. defect sensor, disconnected sensor, broken main belt, defect main motor and so on. If you can hear the main motor start, it is probably something wrong with the sensor. But if you cannot hear the motor start, it is probably something wrong with the main motor. Press Reset to continue. Tip; The sensor can be tested manually on Main Menu - Warning - Service/Diagnostic - Test Sensors.

- Magnet rack failure

The magnet self test system has detected problems with 5 magnets or more. It is not very likely that more than one magnet will go bad at the same time, so when this failure appears, it is more likely caused by e.g. disconnected cables to the magnet rack or a blown fuse. Press Reset to continue. Please check the log for the details.
(Main Menu - Warning - Service/Diagnostic - Warning - View Log)

- Paper feed failure

The paper position is not where the electronics is expecting it to be. Can be caused by e.g. the paper is stuck so the stepping motor is slipping, stepping motor is disconnected or defect, one of the two sensors is disconnected or defect, and so on. Press Reset to continue. Tip; The sensors can be tested manually on Main Menu - Warning Service/Diagnostic - Test Sensors.

- Illegal ESC sequence

The Printer has received an ESC sequence that it doesn't recognize or is placed in wrong location on the page or with invalid parameters. Press OK to continue.

- Sheet length outside limits

The sheet length can be min. 417 mm and max. 585 mm (text and margins). If a print job sent from the computer has ESC sequences that dictates a linelength/margin combination that will exceed the max. or go below the min. sheet length, the print job is cancelled.
Press OK to continue.

3.6 Test print

The test print program is designed to ensure that the 180 printing mechanisms functions properly.
This Printer will do an electronic test on all of it's printing mechanisms continuously during printing. However, this electrical test will not tell if something is wrong mechanically, and therefore it is recommended to print a few pages of test print before beginning the day's production.
By doing so, it's quite easy to see if all printing mechanisms are functioning mechanically.
This Printer has both single-sided and double-sided (inter point) test print patterns.
The test print consists of four different patterns. See the description below:
How to use the test print:

Print Test Pattern:

Main Menu - Warning - Service/Diagnostic - Warning - Print Test Pattern

When entering this menu choice, a warning window will appear.
This is to make the user aware that print jobs from the computer will not be printed as long as you are in this sub-menu.

- X pattern

Will print dots in a x pattern across the sheet, useful when searching for missing dots.

- Full cell, single sided

Prints all six dots on all characters on one side of the sheet, useful for dot quality tests.

- Full cell, both sides

Prints all six dots on all characters on both sides of the sheet, useful for testing how the paper quality can take heavy printing.

- O/Ø pattern

Prints a test pattern made of dot 1,3,5 and 2,4,6, single-sided, useful when searching for extra dots.
The chapter 4.1 "Printing principle" illustrates how the printing mechanisms are placed.
Instruction for troubleshooting will be illustrated by examples in chapter 4.2 "Troubleshooting, incorrect Braille".

3.7 Functions Staple and Fold operating panel

Please see also chapter 7 "Paper cutter/Staple and fold unit".

F1

Toggles between the two last commands used.

F2

Main menu
Increase a value
F3
Scrolls down in a menu
Decrease a value
F4
Enter

Main menu (F2).

- Reset

Pressing F4 will reset the Staple and Fold unit.
This can also be done by opening and closing one of the hatches.

- Pause

Depending on the previous pause setting, pressing F4 will toggle Pause on and off. If you are turning pause on, it will send a pause signal to the Printer, and the Printer will stop.
To continue, turn off the Pause either by open and close one of the hatches, or select Pause on the main menu and press F4. Now the Printer display changes to "Press Continue to resume". Push the Cont. button to resume.

- Cover On/Off

This function is used to select if you want to make books with a cover sheet or not.
Pressing F4 will toggle between on and off.

- CPP (Cover Pick up Position)

This function is used to adjust the position of the cover sheet where the vacuum arm is picking up the cover. It may be necessary to adjust this position if it becomes difficult to pick only one cover sheet at a time. This is because different paper types may behave differently. The value can be set from 0 to 30 mm by pressing F2 to increase and F3 to decrease. Press F4 when done.
We recommend that this adjustment is used in conjunction with the splitter and the vacuum adjustment to ensure that just one cover sheet is picked at a time.

- Cover Length

When the cover sheet is physically longer than the book, you need to compensate for this to be able to get the cover positioned in the centre on top of the book. This value can be set from 0 to 50 mm . The best way to find the correct value is to learn by experience.
Press F2 to increase and F3 to decrease the value and press F4 when done.

- Man. cut (Manual cutting)

Is used to manually start the paper cutter. Press F4 to cut the paper.

- Man. stapling (Manual stapling)

Used to manually activate the staplers. Useful for adjusting the staplers.

- S\&F On/Off (Staple and Fold On/Off)

To turn the stapling and folding unit off, e.g. can be used for making Braille on cover sheets. The printed sheets will just pile up and has to be removed manually.

- S \& F ver 3.3 H-eng

Information about Staple and fold software version.

3.8 Messages in the Staple and Fold display

- Ready

The Staple and Fold unit is ready.
The signal tower will have a green light.

- Paused

The Staple and Fold unit is paused. This can happen for two reasons. The first is when you select pause on the main menu. The signal tower will have a green light.
Second is when a problem appears while the Printer is running.
Now the signal tower will have a red light.
To continue, turn off the Pause either by open and close one of the hatches, or select Pause on the main menu and press F4. Now the Printer display changes to "Press Continue to resume". Push the Cont.
button to resume.

- Lost sheet

The vacuum arm has detected a lost sheet.
The signal tower will have a red light.
To continue, open one of the hatches and place the sheet in the correct position manually. Close the hatch, the Printer display changes to "Press Continue to resume". Push the Cont. button to resume.

- Cutter error

The paper cutter has some sort of malfunction e.g. something is obstructing the blade.
The signal tower will have a red light.
The system needs a restart. Turn the power off. Find the reason for the error, fix the problem and turn the power back on.

- Replace Paper roll

The paper roll needs to be replaced soon.
The signal tower will have a yellow flashing light.
The actual roll diameter that will start this alarm can be set by the user.
Note! The Printer will not stop, this is just a reminder to make you keep an eye on the paper roll.

- Servo alarm

Vacuum arms horizontal movement is malfunctioning in some way.
The signal tower will have red and green flashing light.
The system needs a restart. Turn off the power, find the reason for the error and turn the power back on.

- Book eject

The finished stapled and folded book did not fall down. The signal tower will have a red light.
When a book is finished, a sensor must register the book falling down within a certain period of time.
If it does not fall down, the book might be stuck in the hatch opening. To correct the problem, slide the book over the sensor and open and close one of the hatches.
Now the Printer display changes to "Press Continue to resume". Push the Cont. button to resume.

3.9 Signal tower

In addition to the messages in the display, there is also a signal tower.

- Green light:

Normal condition, everything is OK.

- Green flashing light:

The machine has received a print job and is adjusting for the sheet size in use.

- Yellow light:

One of the hatches are open.

- Yellow flashing light:

The paper roll needs replacement soon.

- Red light:

Can be caused by several reasons.

- The vacuum arm has lost a sheet.
- The book has not been ejected correctly.
- The hatches are opened while the Printer is running.
- Paper cutter error.

- Red and green flashing light:

Servo alarm, vacuum arms horizontal movement is malfunctioning.

4. SERVICE AND MAINTENANCE

When doing service or maintenance, the cover must be taken off. Some procedures covered in this chapter might be done simply by removing for example a side panel. But we recommend for "bigger operations" to remove the cover completely. Please see chapter 2.2 "Removing the Printer cover" on how to do this.

When the cover is removed, the operator panel is also removed. To be able to run tests and so on, you can place the front panel beside the Printer so that you are able to connect the cables to the operator panel. Or you can unscrew the panel from the cover and keep it near the Printer.
Please observe that the operator panel is an electrical board, and MUST NEVER BE PLACED ON A CONDUCTIVE SURFACE! If there is a short circuit on the board, it might damage the board.

The Printer can be run without the cover on when it's set in "Service Mode".

4.1 Printing principle

The figure below is a very simplified version of the printing mechanisms in this Printer.
The four "bars" across the paper indicates the magnet racks.
The magnet racks are named from A to D.
Magnet rack A and B make dots on the side of the paper facing down, and magnet rack C and D makes dots on the side facing up.

The cross section below is a "theoretical" figure showing the parts inside the printing mechanism. The Printer has been "sliced" to show more detailed of how it is constructed.

Please see the figure on the previous page.
The two shafts, one at the top and one at the bottom, are rotating synchronized. On each shaft there are eccentrics moving the beams and papershoes up and down. This movement is used both to hold the paper and to make the dots. A row of dots is printed for each revolution of the shafts. The shafts must rotate two times to form a complete column of characters.
Please see figure below:

$$
000 \bigcirc 00000000000 \text { First revolution }
$$

$\begin{array}{lllllll}\circ 00000000000000 \\ 000000000000 & 000 \\ 000000000000000 \text { Third revolution }\end{array}$

OOOOOO OOO OOO OOO
OOOOOOOOOOOOOOO
000000000000000

To be able to print interpoint (where both sides of paper are printed simultaneously), the back page is offset a little to the right and a little down to fit in between the dots on the front page. Please see figure below:

Back page (dashed lines)

The drawing on this page illustrates the basic principle of how the dots are printed. Please also see the drawings on the next page.
The parts in the upper left of this drawing is one of the magnet racks. The parts in the lower right, are the beam and paper shoes. The magnet racks do not move, but the beams and the papershoes are moving up and down for every revolution of the eccentric shafts.
Inside each magnet rack there are 45 electromagnets. The magnets are controlling the long pivot arms. When a dot is going to be printed, the magnet is engaged, and the long pivot arm will be drawn against the magnet poles.
At the same time, the beam and the paper shoe will start to move downwards, and the short pivot arm will catch the hook of the long pivot arm. The beam will continue to travel downwards, and will force the printing pin into the paper.

Figure A
Shows the position of the pivot arm when the Printer is not printing, and the magnet is not engaged.

Figure B
Now the magnet is engaged, and the long pivot arm has been drawn against the magnet. The short pivot arm is moving down towards the hook on the long pivot arm.

Figure C
The long pivot arm's hook catches the short pivot arm. When the short pivot arm moves further down, the printing pin will be forced down into the paper and make a dot.

General overview Printer

4.2 Troubleshooting, incorrect Braille.

If any errors have been found in some of the characters in the printed text during proofreading, the first thing to do is:
Check the characters in the text-file in the computer to find out if the error could come from the textfile and not from the Printer.
If the text-file is OK, the problem is caused by the Printer.
On earlier models of Braillo Printers, this could be caused by either an electrical problem or a mechanical problem. But on this model of Printer, there is an integrated self-diagnostic system that is checking the magnets continuously during printing, and will trig an alarm if it detects some electrical problems with the magnets. So, the missing dots found here are probably caused by some faulty mechanical parts or it could be dirt clogging the moving mechanisms.

Inside the Printer there are four identical magnet racks, named from A to D. Each magnet rack contains 45 printing mechanisms. There are totally 180 printing mechanisms to choose from when the error search begins. See chapter 4.1,"Printing principle".

If the Printer has been printing a lot (it could be after a year, or after 1000 printing hours, depending on what comes first) errors in the characters could occur. If this happens, it could just be that the Printer needs regular maintenance. See chapter 4.6 "Magnet rack, cleaning", and chapter 4.18 "Maintenance".

As a start, you should run the built-in Test Print. Depending on what kind of errors you have, you should use different tests.
The essential thing at this stage is to find which magnet rack(s) is causing the trouble.
If there are missing $\operatorname{dot}(\mathrm{s})$, use the X -pattern to detect which magnet rack(s) is missing the $\operatorname{dot}(\mathrm{s})$.
If there are too many dots, use the full cell lines, or the test pattern on test print no. 4, and the extra dot(s) will appear in the space between the lines.

However, the best test is ordinary text, if a proofreader is available. To locate the faulty magnet rack(s), see figures on the following pages.

There are several methods to confirm that you have found the correct magnet rack(s). One method is to disconnect the rest of the magnet racks, and see if the dots in question still appears.

To determine if a problem is electrical or mechanical.
See if the suspected pivot arm is moving like the rest of the pivot arms on the magnet rack. If it does move, but still not making dots, it is probably a mechanical problem. If it does not move, it is possible to pull the suspected long pivot arm with your finger during embossing. If the dots appears the problem is likely caused by some problems in the electric circuits.

If one magnet rack is missing all the dots all the time, it could be because of a blown fuse. On the back of the magnet racks there is a red light that is indicating that the magnet rack has power. If this light is dark, check the fuse for the magnet rack.
See chapter 6.2 "Electric unit Printer overview" for more details.

Which magnet makes what dot?

Please take some time to examine the figures below and on the next page. It is very important that you know how the magnets are arranged to be able to understand how the Printer works.

The letters and numbers on the figures is indicating the following:
The letter A, B, C and D is the name on the magnet rack. The number following the letter is the particular magnet number in that particular magnet rack.
(Note that the magnet numbers are always counted from the end where the connectors are fitted. Don't mix this with character/line/column number).

The letter " P " means page. The figure shows a sheet of paper printed in "4-page mode".
The two circles is showing which magnet that has made the different dots. Line no. one will be in the upper left corner when facing the page.

Please see the table below for a complete overview of the magnets. "Up" means dots on top of the sheet, and "Down" means dots on the underside of the sheet.

Line no.	Dot no.	Up	Down	Line no.	Dot no.	Up	Down	Line no.	Dot no.	Up	Down
1	1	C01	B01	11	1	C16	B16	21	1	C31	B31
	2	D45	A45		2	D30	A30		2	D15	A15
	3	C02	B02		3	C17	B17		3	C32	B32
2	1	D44	A44	12	1	D29	A29	22	1	D14	A14
	2	C03	в03		2	C18	B18		2	C33	B33
	3	D43	A43		3	D28	A28		3	D13	A13
3	1	C04	B04	13	1	C19	B19	23	1	C34	B34
	2	D42	A42		2	D27	A27		2	D12	A12
	3	C05	B05		3	C20	B20		3	C35	B35
4	1	D41	A41	14	1	D26	A26	24	1	D11	A11
	2	C06	B06		2	C21	B21		2	C36	B36
	3	D40	A40		3	D25	A25		3	D10	A10
5	1	C07	в07	15	1	C22	B22	25	1	C37	B37
	2	D39	A39		2	D24	A24		2	D09	A09
	3	C08	B08		3	C23	B23		3	C38	B38
6	1	D38	A38	16	1	D23	A23	26	1	D08	A08
	2	C09	в09		2	C24	B24		2	C39	B39
	3	D37	A37		3	D22	A22		3	D07	A07
7	1	C10	B10	17	1	C25	B25	27	1	C40	B40
	2	D36	A36		2	D21	A21		2	D06	A06
	3	C11	B11		3	C26	B26		3	C41	B41
8	1	D35	A35	18	1	D20	A20	28	1	D05	A05
	2	C12	B12		2	C27	B27		2	C42	B42
	3	D34	A34		3	D19	A19		3	D04	A04
9	1	C13	B13	19	1	C28	B28	29	1	C43	B43
	2	D33	A33		2	D18	A18		2	D03	A03
	3	C14	B14		3	C29	B29		3	C44	B44
10	1	D32	A32	20	1	D17	A17	30	1	D02	A02
	2	C15	B15		2	C30	B30		2	C45	B45
	3	D31	A31		3	D16	A16		3	D01	A01

Possible reasons for errors:

See figures on the next page.
If a dot from a certain printing pin is missing regularly, the reason might be one of the following:

1. Defective magnet (The self-diagnostic system will find this one first).
2. Broken short pivot arm.
3. The long pivot arm cannot move because of dirt.
4. The printing pin is stuck because of dirt, causing the short pivot arm to miss the long pivot arm.
5. Errors in the magnet rack board.

If dots from several printing pins are missing now and then, the reason might be one of the following:

1. The sponge list is pushing too hard on the long pivot arm.
2. The gap between the two pivot arms is too large.
3. The support list has become sticky on the side against the long pivot arms, and the long pivot arm does not move properly.
4. The sponge list on the short pivot arm is so worn/compressed that it will not provide enough tension on the pivot arm.

If there are too many dots on the paper, the reason might be one of the following:

1. The sponge list is not pressing hard enough against the long pivot arm.
2. The gap between the two pivot arms is too small.
3. The magnet poles have become sticky, and this causes the pivot arms to stick to the magnet.
4. The long pivot arm does not move properly.

Control:

To be sure that you have found the right mechanism after troubleshooting, you can do the following test: Carefully pull the suspected long pivot arm against the magnet with your finger.
Note! Please be careful to avoid getting in contact (e.g. clothes, hair, beard, jewelry or any part of the body) with any other moving parts of the Printer to prevent injuries!

At the same time, run a test print. The mechanism with the finger on, will make a row of dots across the sheet until you take the finger away. By doing this you can see if this row of dots is situated on the same place (and same side!) on the sheet as the error is.

Observe that the same printing mechanism (magnet, long pivot arm, short pivot arm and printing pin) makes all the dots in a row across the page.

4.3 Magnet rack - Removal

Please see figures below:
Magnet racks A and C (the two on the side the paper goes into the Printer) are quite easy to reach, but to remove magnet rack B and D, it is often best to first remove the paper cutter (see figure to the right) and the paper feeder.

Disconnect the cables for the magnet rack.
Make sure that the brass eccentrics at the ends of the magnet rack is touching the magnet rack on both ends. This to be able to get it back to the exact same position sideways.

Note! Before removing the cutter, make sure that the position on the cutter can be re-established by use of the position plates at the back of the cutter. Do this at both sides.

Remove the magnet rack by unscrewing the four bolts shown in the figure.

4.4 Magnet rack - Disassembly, step by step.

There are two main reasons for disassembling the magnet rack. To replace some parts, i.e. a defect magnet, a worn pivot arm, or for regular maintenance.

The magnet racks can be considered as the parts of the Printer that will have the greatest influence on the dot quality, so it is very important to know how to deal with them.

Take the magnet rack out of the Printer like described in chapter 4.3 "Magnet rack, removal". Next, follow the instructions below.

Step 1. Remove the two bolts holding the sponge list, and then remove the sponge list.

Step 2. Remove the two nuts holding the support list, and then remove the support list.

Step 3.
Remove the two bolts holding the pivot arm rack, and then carefully remove the pivot arm rack. The magnet rack is now disassembled.

4.5 Magnet - Replacement

Please observe that the numbering on the magnets in a magnet rack, always starts at "one" at the end where the connections are. (It does not refer to dot number, character number or column number!).

Disassemble the magnet rack as described in chapter 4.4 "Magnet rack disassembly, step by step". Next, follow the instructions below.

Step 1. Remove the screws holding the list, and the list itself.

Step 2. Pull out the defect magnet with, e.g. a narrow pair of "needle nose" pliers.

Step 3. Check the magnets internal resistance if you have an ohm-meter available. The resistance should be between 185 ohm and 240 ohm . Any value outside this range indicates a defective magnet.

Step 4. Replace the defective magnet with a new magnet in its place. Note: Direction of the spikes on the magnet. These spikes must be oriented the same direction as the rest of the magnet spikes in the magnet rack.

4.6 Magnet rack - Cleaning

Remove the magnet rack as described in chapter 4.3 "Magnet rack, removal".
Then disassemble the magnet rack as described in chapter 4.4 "Magnet rack disassembly, step by step".
Now damp an cloth with denatured alcohol to wipe off the surfaces as described in the figure below:

\triangleNote! Never oil, grease or lubricate any of the moving parts on a magnet rack!

4.7 Magnet rack - Adjustment

Before replacing the magnet rack in the Printer, two adjustments must be checked.
The first one is the distance between the support list and the pivot arms. This is the travelling distance of the pivot arm, and it should be adjusted to about 0.8 mm using a feeler gauge. Adjust the nuts on both ends of the magnet rack.
If the 0.8 mm feeler gauge goes in, and the 0.9 mm feeler gauge don't, consider the adjustment OK. Make sure that the nuts are tight when you are done!

Please see figure below:

The second adjustment is the pressure the sponge list exerts against the pivot arms.
The sponge list works as a return spring for the pivot arms. The correct adjustment is when the sponge list is slightly pressing against the pivot arms, but pivot arms still can move freely.

Please see figure below:

4.8 Magnet rack - Refitting and adjusting

Please see figure below:
Before putting the magnet rack back in the Printer, make sure that the magnet rack itself is adjusted as described in the previous chapter.

When replacing the magnet rack in the Printer:
Put in the four fastening screws, but do not tighten them. Slide the magnet rack horizontally away from the Printer, so that the magnet rack is touching the horizontal adjustment screws. This will ensure that the magnet rack is in exactly the same position as before it was taken off the Printer.

See next chapter regarding correct adjustment of the magnet racks.
Note! All explanations refer to one magnet rack, but these adjustments must be done to all four magnet racks.

The magnet rack must be adjusted in two directions, horizontal and vertical.
The horizontal adjustment is done first. This adjustment positions the magnet rack correctly in relation to the short pivot arms. If the Printer prints too many or too few dots, the horizontal adjustment could be the reason.

The vertical adjustment is to be done. This adjustment will affect the pressure the pivot arms put on the printing pins. This directly affects the shape of the printed dots.

To be able to adjust the magnet rack correctly, it is necessary to put the Printer in "printing position".
This is done by rotating the main belt by hand until the arrows at the ends of the shaft are pointing in the opposite direction of each other. It is possible to get the mechanism to balance in this position, but you can also lock the shafts with e.g. a self locking wrench ("vice-grip" pliers).

When the arrows at the end of the shafts are pointing in the opposite direction of each other, the short pivot arms will be positioned approximately like in the figure below:

The gap between the long and the short pivot arm should be approximately 0.2 mm . When adjusting this, make sure that the gap is even for all the pivot arms and the same on both ends of the magnet rack.

How to adjust:
Observe that the screw for horizontal adjustment will not pull the magnet rack outwards, they will only push inward.
So the best way of doing this, is to loosen the four fastening bolts holding the magnet rack. Then unscrew the horizontal adjustment screw a little. Now slide the magnet rack outward from the Printer, so it touches the horizontal adjustment screws again. Then tighten the four fastening screws just a little so the magnet rack is held firmly in place, but still able to move. Use the horizontal adjustment screw to move the magnet rack closer to the Printer. If this is done in small steps, it is possible to watch the gap getting smaller, and the trick is to stop just before the long pivot arm is touching the short pivot arm.
When the position is correct, tighten the four fastening bolts.

Next is vertical adjustment.
Note! The Printer must be in the "printing position" when checking this distance.

The vertical adjustment of the magnet rack sets the pressure of the printing pins when making dots.
The amount of pressure needed depend on several things. The first (and most important) is the paper quality. The second, is the personal preference of dot quality.

So the best way to find the correct level of vertical adjustment, is first to decrease the pressure so the dots will be very faded and weak.
Then readjust the pressure up in small steps until the dot quality is satisfactory. By doing this you can make sure that you are running the Printer with just enough pressure to make good dots, but not so much pressure that the Printer will be worn/damaged.

From our experience we have found that the vertical adjustment should be approximately 1 mm , but if the Braille dots are too weak, you may adjust the magnet rack tighter in small steps (increase the 1 mm distance).

Please see figure on next page:

Note! Adjust in small steps, only $\mathbf{1 / 4}$ of a revolution at a time. Then check the Braille quality.

Note! When adjusting the magnet racks vertically, observe that magnet rack A and B must be moved upwards to increase the pressure, and magnet rack C and D must be moved downwards to increase the pressure.
(Moving away from the paper increases pressure).

4.9 Beam and Paper shoes - Overview

Please see the figures below:

4.10 Beam and Paper shoes - Removal and refitting

Beam and paper shoes - Removal and refitting (continued)

5. Remove the belt.

This is done by loosening the belt tensioner screws. When this is done, the belt can be lifted off the upper cogwheel. Please see figure to the right.

Loosen these two screws to remove the belt

6. Remove the top frame.

Unscrew the bolts as indicated on the figure to the right, and then lift the frame carefully upwards. Set aside.

7. Now the beams and paper shoes can be lifted carefully upwards.

Assembly is done in the reverse order.

4.11 Beam - Replacement of short pivot arm

Please see figures below:

1. Remove the six screws as indicated on the figure. Pull out the short pivot arms, there are 45 pcs. on each side.

2. Pull out the shaft, and replace the short pivot arm(s).

Assembly is done in reverse order.

Note! When putting the short pivot arms back into the beam, be sure that the printing pins are hang-
 ing vertically like on the figure. This is to make room for the short pivot arm.

4.12 Beam - Replacement of printing pins

Please see the figures below:

Remove the six screws as indicated on the figure.

Note! Before the parts are separated, make sure that the beam is held with the printing pins hanging down!

Place the pin guide with the pins on a table, do not turn it upside down or the pins will fall out!

Now defect printing pins can be replaced.

Assembly is done in reverse order.

4.13 Return spring adjustment

Before performing this adjustment, make sure that the shafts are turned to the correct position.
See the marks at the end of the shafts, the arrows must point directly towards each other, like in the figure below.
Then the springs can be adjusted to the correct length, i.e. 68 mm .
1 Note! It is critical that the length of these two return springs is 68 mm !

4.14 Eccentrics adjustment - Belt tension

After removing the belt, it is necessary to align the eccentrics.
Put the belt back on, tighten it with the belt tensioner (2), and check that the arrows at the end of the shafts (1) are pointing towards each other. See figure below.

If the marks are not aligned like in the figure, it might be necessary to move the belt a notch or two on one of the wheels. This is done by loosening the belt tensioner (2) again, and then lift the belt up from the big wheel and move it a notch on the wheel. Then tighten the belt.

4.15 Beam wheel sensor - Adjustment

The Beam wheel sensor is placed on the lower shaft, on the opposite end from the belt.
Note that this adjustment has to be done with the shafts positioned like on the figure with the arrows pointing towards each other. The notch on the beam wheel should now be placed exactly opposite the sensor like in the figure below.
If the edge is not in it's correct position, it must be adjusted.
Keep the shafts in this position while loosening the two screws holding the beam wheel. Turn the beam wheel until the notch on the beam wheel is placed in the middle of inductive sensor. Then fasten the two screws.

4.16 Paper shoes - Adjustment

Place a sheet of paper between the paper shoes (P).
Turn the belt so the two points (6) at the end of the shafts (2) are pointing towards each other as shown in the figure below.

Lock the shafts in this position with a wrench (vice-grip), e.g. at the end of the shaft (2).
Loosen the locking nuts (1), adjust the push rods (3) by turning them. Adjust the push rods against the inner eccentric bearing (4) until the paper shoes (P) have a light pressure on the paper.
Check that the gap (5) between the press plates and the beam above, is equal on both upper and lower units.
Secure the push rods (3) with the locking nuts (1).

\triangleNote! The function of the bearings (4), is to reduce the noise the printer makes while running. It is a common misunderstanding that you can increase the pressure on the papershoes by adjusting these push rods. This does not have any influence on the dot quality!

4.17 Inductive sensors - Adjustment

This Printer uses inductive sensors in three places. One for the Beam wheel on the lower shaft, and two are controlling the movement of the paper feed mechanism.

It is possible to check if the inductive sensors are functioning, by looking at the rear end where the cable enters the sensor. Inside the sensor is a tiny LED lamp that will light up if a magnetic object is in front of the sensor. The light comes out through some transparent plastic around the cable.
So by having the power turned on, and at the same time turning the shafts, the light should go on and off.

The sensors can also be tested if you open the menu choice Main Menu - Warning - Service/Diagnostic - Test Sensors.

When replacing/adjusting the sensors, the gap between the timing wheel and the sensors should be maximum 0.6 mm . See figure below.

4.18 Paper sensor - Replacing

This Printer has a sensor to detect if paper is present in the Printer.
This sensor is situated on the paper guide where the paper enters the Printer.
The sensor is an infrared, reflective type, and it functions like this: A little infrared lamp is sending light downward. If there is paper present, the light will be reflected back, and is detected by a photo transistor. If the sensor is defective, it must be replaced. It can be done like this:
Take the paper guide out of the Printer. Unscrew first the screws (A), then (B) and then (C). Now the sensor is loose. The assembly is done in reverse order.

4.19 Maintenance

Weekly (without taking the cover off).

Does the Printer print correct Braille?
How is the Braille dot quality?
Check for any damages on the outside of the cover.
Are the operator panel and display functioning and are power lamps illuminated?
Do the fans work? Are the fans clean?
If there is a lot of dust from the paper on the paper guides, use a vacuum cleaner.
Drain the compressor tank and filter regulator.

Every 500 hours or six months.

All of the weekly maintenance.
Is the Printer mechanism, electric unit, base plate and so on clean? Use a vacuum cleaner to remove dust.
Check the main belt for wear, tear, cracks and check the tension.
Clean the magnet racks.
Check the sponges for the long pivot arms on the four magnet racks, the sponges should be able to keep the long pivot arms pressed against the support list.
When putting the magnet racks back in, check all the magnet rack adjustments.
Check if the printing pins move freely, and if not clean the printing pin guide.

Every 1000 hours or twelve months.

All of the 500 hours or six months maintenance.
Check the four sponges for the short pivot arms, the sponge should be able to keep the short pivot arm pressed all to the end of its travelling distance.
Check the wear and tear on the push rod (12×56). This can be measured with a calliper. The length must be between 55.90 and 56.00 mm .
Check if the paper shoes are worn. The Printer should be able to give good Braille dot quality, but if not, worn papershoes could be the reason.
Check the length on the printing pin. This can be measured with a calliper, and the length must be between 64.40 and 64.50 mm .
Check sharpness of the knives on the paper cutter. Replace if necessary.
Lubricate all the stroke ball bearings, using a universal grease with molybdensulfid.
Lubrication should be done as described in the figure on the next page.

Lubrication

This should be done every 1000 running hours, or approximately once a year.
Lubricate all items marked "grease" on the figure below. (These are the only locations on the Printer grease may be applied!). The Printer needs to be disassembled to do this lubrication, so it is recommend to do this at the same time as the regular 1000 hour service.
Use a universal grease with molybdensulfid. Use no oil.

5. PARTS - EXPLODED VIEWS

5.1 Magnet rack

Parts magnet rack
Pos. Name Quantity per. rack
1 Sponge list, magnet rack 1
2 Magnet rack 1
3 Support list, magnet rack1
4 Shaft, long pivot arm 1
5 Pivot arm, long 45
6 Electronic board, magnet rack 1
7 Magnet 45
8 Pivot arm rack 1

5.2 Beam

Parts beam (upper or lower)
Pos. NameQuantity per. beam1 Stroke ball bearing Ø202
2 Beam, (upper or lower) 1
3 Fastener for shaft short pivot arm 4
4 Sponge list for short pivot arm 2
5 Pin guide 1
6 Short pivot arm 90
7 Printing pin 90
8 Shaft, short pivot arm Ø3x305 2

5.3 Paper shoe

Parts paper shoe (upper or lower)

Pos Name

Quantity pr. shoe
1 Retaining ring4
2 Adjustment screw (push rod) 2
3 Stroke ball bearing Ø20 2
4 Spacer 2
5 Paper shoe (upper or lower) 1
6 Plastic shims 4

5.4 Paper feeder

Parts paper feeder
Pos. NameQuantity1 Pulling wheel2
2 Bearing 6003 2Z 2
3 Timing wheel 1
4 Stepping motor 1
5 Paper feed sensor no. 1 1
6 Paper feed sensor no. 2 1

5.5 Shafts, belt

How to get the timing belt pulley off the shaft.

Parts shaft, belt
Pos. Name Quantity
2
1 Shaft1
3 Timing belt pulley 40 L 100 2
4 Belt tensioner 2
5 Timing belt pulley 22 L 100 1

Shaft

Parts shaft, exploded
Pos. NameQuantity per. shaft
1 Main bearing with housing2
2 Nut KM5 2
3 Bearing outer eccentric 6205 2Z 2
4 Nut KM6 2
5 Bearing inner eccentric 6006 2Z 2
6 Shaft 1

5.6 Top and bottom frame

Parts top and bottom frame, exploded

Pos. Name
1 Retaining ring Ø 22 4
2 Stroke ball bearing Ø12 2
3 Spacer Ø22 2
4 Push rod Ø12X56 ceramic 2
5 Retaining ring Ø16 4
6 Stroke ball bearing Ø8 2
7 Frame 1Quantity per. frame

Frame, complete

5.7 Paper cutter, part 1 of 3

Pos	Name	Quantity
1	Cylinder ...	

Paper cutter, part 2 of 3, roller blade assembly

Pos	Name	Quantity
1	Roller blade ..	

Paper cutter, part 3 of 3, paper holder

Pos Name
Quantity
1 Paper holder
2 Blade fixed
.1
3 Paper holder cylinders .. 2

6. TECHNICAL SPECIFICATIONS

6.1 Technical specifications

Format:

Paper roll:

> Max. diameter 1100 mm (43 inches)
> Inner core diameter min. 70 mm , max. 84 mm
> Min. 260 mm , max. $330 \mathrm{~mm}(13$ inches $)$
> Min. $417 \mathrm{~mm}(16.4$ inches $)$, max. $585 \mathrm{~mm}(23$ inches $)$
> Min. 10 , max. 44 characters
> Single / Inter point
> Inner/Outer min. 12.7 , max. $50.8 \mathrm{~mm}(0.5-2$ inches)
> Max. 30 lines per page
> Standard medium 6 dot, see dimensions below
> Fixed 5 mm
> Min. $120-$ max. $180 \mathrm{~g} / \mathrm{m}^{2}$, Recommended $150 \mathrm{~g} / \mathrm{m}^{2}$

Paper (roll) width:
Sheet width:
Line length:
Printing Mode:
Margins:
Page height:
Braille cell:
Line spacing:
Paper Weight:

Printing Speed:

Characters/sec.:
Pages/hour:
Variable, from 440 char./sec. to $650 \mathrm{char} / \mathrm{sec}$.
No. of pages per hour is dependent on page format and speed

Electrical:

Voltage:
Single phase $230 \mathrm{~V}(+/-10 \%), 50 / 60 \mathrm{~Hz}$
Current:
Approximately 8.5 A max.
Fuse Printer:
10 A
Power:
Approximately 2000 W max.

Compressed air:

Clean air without oil or water, $\min .7 .0$ bar @ $1001 / \mathrm{min}$., max. temperature $50^{\circ} \mathrm{C}$.

Communication with the computer:
USB
Ethernet

Environment:

Temperatures:
Rel. Humidity:

$$
15^{\circ}-30^{\circ} \mathrm{C}\left(60^{\circ}-86^{\circ} \mathrm{F}\right)
$$

$$
40-60 \%
$$

Measurements:
Height:
1900 mm
Width:
Length:
Weight:

1030 mm
4200 mm
570 kilos

6.2 Electric unit Printer - Overview

The electric unit is placed on the base plate of the Printer, and contains connections, fuses and power supply. Note that you must disconnect the mains when working on this unit.

6.3 How to replace fuses

The fuses are placed on a PCB inside the Electric Unit. See figures below for how to open the box. Remember to disconnect the mains cable first!

Lift the lid upwards

The fuses.

Note that the two mains fuses is placed under transparent lids. All the fuses are $5 \times 20 \mathrm{~mm}$ and can be of glass or ceramic type.

6.4 Main board - Connections

6.5 Escape-sequences

What is an escape-sequence?
An escape-sequence is just a name for a code that is sent to the Printer from the computer to change the parameters that control the way the Printer works. Many parameters that can be set via the operator panel, can also be changed with escape-sequences. Note that the escape-sequences will be active on the print job they are enclosed, but the Printer will go back to what the operator panel dictates when finished with the job.

This makes it possible to have different codes (read; escape-sequences) stored in a document. So, when the document is sent to the Printer, these codes are sent first and the Printer sets itself in the correct mode and format automatically.

Note! When the Printer receives an escape-sequence, it will have first priority. This means, regardless of the setting made before and regardless what the operator panel dictates, the most recent escape-sequence will take precedence.

\triangle
Note! Escape-sequences should be placed at the very beginning of the first page on the sheet, (e.g. page 1, 3, 5, $7 \ldots$...). However, a software form feed can be placed wherever needed. (If there is a command on the other pages, it will be skipped).
All page formatting which is done on the front page will also format the back of the same sheet.

An overview of the different escape-sequences:

ESC A n ESC B nn	- Sheet Width. - Line length.	n can be 0 (2-page mode) or 1 (4-page mode) nn can be from 10 to 44 characters.
ESC D nn	- Margin 1.	nn can be from 0.5 " to 2.0 "
ESC E nn	- Margin 2.	nn can be from 0.5 " to 2.0 "
ESC G n	- Page 1 up or down	n can be 0 (Page 1 up) or 1 (Page 1 down).
ESC H n	- Print format	n can be 0 (Single sided) or 1 (Inter point).
ESC P nn	- No. of sheets	nn can be from 01 to 99 sheets
ESC 0	- Soft Reset	
ESC 1	- Soft Form Feed	
ESC 4	- Adding the Printer	at the last line on the sheet

\triangle
Note! The escape-sequences will be executed immediately if the Printer is not running. However, if the Printer is running, the escape-sequences will keep their place in the document, and will be executed when this particular page is printed. Also keep in mind that any page formatting command must be kept on the front page of a sheet. Then the command will affect both the front and back page, i.e. one sheet. If there are page formatting commands on the back page of a sheet, these commands will be skipped.

Please see the following explanations on how to combine different values to get the different escapesequences.

Sheet Width:

ESC A n - Sheet width.
n can be 0 or 1, 2-page mode (0) or 4-page mode (1).

Page mode	ASCII	HEX
2-page	027065048	1B 41 30
4-page	027065049	1B 41 31

Default is 4-page.

Line length:

ESC B nn - Line length.
nn can be from 10 to 44 characters.

Char	ASCII	HEX
10	027066049048	1B 42 31 30
11	027066049049	1B 42 31 31
12	027066049050	1B 42 31 32
13	027066049051	1B 42 31 33
14	027066049052	1B 42 31 34
15	027066049053	1B 42 31 35
16	027066049054	1B 42 31 36
17	027066049055	1B 42 31 37
18	027066049056	1B 42 31 38
19	027066049057	1B 42 31 39
20	027066050048	1B 42 32 30
21	027066050049	1B 42 32 31
22	027066050050	1B 42 32 32
23	027066050051	1B 42 32 33
24	027066050052	1B 42 32 34
25	027066050053	1B 42 32 35
26	027066050054	1B 42 32 36
27	027066050055	1B 42 32 37
28	027066050056	1B 42 32 38
29	027066050057	1B 42 32 39
30	027066051048	1B 42 33 30
31	027066051049	1B 42 33 31
32	027066051050	1B 42 33 32
33	027066051051	1B 42 33 33

34	027066051052	1B 423334
35	027066051053	1B 423335
36	027066051054	1B 423336
37	027066051055	1B 423337
38	027066051056	1B 423338
39	027066051057	1B 423339
40	027066052048	1B 423430
41	027066052049	1B 423431
42	027066052050	1B 423432
43	027066052051	1B 423433
44	027066052052	1B 423434

Default is 42 characters per. line.

Margin 1:

ESC D nn - Margin 1.
nn can be from $0.5^{\prime \prime}$ to $2.0^{\prime \prime}$

Margin 1	ASCII	HEX
0.5 "	027068048053	1B 44303
0.6 "	027068048054	1B 443036
0.7 "	027068048055	1B 443037
$0.8 "$	027068048056	1B 443038
0.9 "	027068048057	1B 443039
1.0"	027068049048	1B 443130
1.1 "	027068049049	1B 443131
1.2"	027068049050	1B 443132
1.3 "	027068049051	1B 443133
1.4"	027068049052	1B 443134
1.5 "	027068049053	1B 443135
1.6 "	027068049054	1B 443136
$1.7 "$	027068049055	1B 443137
1.8 "	027068049056	1B 443138
1.9 "	027068049057	1B 443139
2.0 "	027068050048	1B 44323

Default is $1.0^{\prime \prime}$.

Margin 2:

ESC E nn - Margin 2.
nn can be from 0.5 " to 2.0 "

Margin 2	ASCII	HEX
0.5 "	027069048053	1B 453035
0.6 "	027069048054	1B 453036
0.7 "	027069048055	1B 453037
0.8 "	027069048056	1B 453038
0.9 "	027069048057	1B 453039
1.0"	027069049048	1B 453130
1.1"	027069049049	1B 453131
1.2"	027069049050	1B 453132
1.3"	027069049051	1B 453133
1.4 "	027069049052	1B 453134
1.5 "	027069049053	1B 453135
1.6 "	027069049054	1B 453136
1.7 "	027069049055	1B 453137
1.8"	027069049056	1B 453138
1.9 "	027069049057	1B 453139
2.0"	027069050048	1B 453230

Default is $1.0^{\prime \prime}$.

Page 1 up or down:

ESC Gn - Page 1 up/down.
n can be 0 (up) or 1 (down).

Page 1	ASCII	HEX
Up	027071048	1B 47 30
Down	027071049	1B 4731

Default is Page 1 Up.

Print format:
ESC H n - Print format
n can be 0 (single sided) or 1 (inter point).
Print format ASCII HEX
Single sided 027072048 1B 4830
Inter point 027072049 1B 4831
Default is inter point.

Number of sheets:

ESC P nn - Number of sheets nn can be 01 to 99 sheets.

Sheets	ASCII	HEX
01	027080048049	1B 503031
02	027080048050	1B 503032
03	027080048051	1B 503033
04	027080048052	1B 503034
05	027080048053	1B 503035
06	027080048054	1B 503036
07	027080048055	1B 503037
08	027080048056	1B 503038
09	027080048057	1B 503039
10	027080049048	1B 503130
11	027080049049	1B 503131
12	027080049050	1B 503132
13	027080049051	1B 503133
14	027080049052	1B 503134
15	027080049053	1B 503135
16	027080049054	1B 503136
17	027080049055	1B 503137
18	027080049056	1B 503138
19	027080049057	1B 503139
20	027080050048	1B 503230

Software Reset:

ESC $0 \quad$ - Soft Reset
This command is used to reset the Printer. It is used from the computer and has the same effect as pushing the key RESET PRINTER. Software Reset should be used with care: If the printer has not finished printing, the rest of the text in the buffer will be lost, and a new paper position will be assumed by the Printer. Because of this, the command is only to be used after a software form feed has been executed, and the Printer has stopped completely.

	ASCII	HEX
Software Reset	027048	1B 30

Software Form Feed:

ESC 1 - Soft Form Feed
This command is to be used after all text in one volume has been transmitted to the Printer. If text corresponding to less than two pages, or text with an odd number of pages is received, and not followed by FF on the last page, the Printer will wait for more text or FF. This means that the last page may be stuck in the Printer. This is due to the double-sided printing of the Printer. This command makes the Printer to start printing the rest of the text. After this the paper position will be the same as it had when this volume of text was started. Then page no. 1 on the next volume will start out correctly. There will always be at least one blank sheet of paper between the volumes of text when finishing each volume with a Software Form Feed.

	ASCII	HEX
Software Form Feed	027049	1B 31

Printer ID:

ESC 4 - Adding the Printer ID
When you have several Braille Printers producing the same Braille material, it is not always easy to later figure out what Printer made which book. It is therefore possible to add a Printer ID to the last line on a sheet. There is no matter where the escapesequence is placed on the page, the ID will always be printed on the last line. Meaning, if you send this escape-sequence on the last page of every print job, you will get the Printer ID printed on the last line on the last page.

The Printer ID is a 5 digit code that has to be set in the menu choice: Main menu - Printer Setup - Printer ID. See figure below:

7. PAPER CUTTER / STAPLE AND FOLD

NOTE! The paper cutter is driven by compressed air and is controlled from the control unit on the Staple and Fold unit. It is considered to be a part of the Staple and Fold unit, and not a part of the Printer.

7.1 Description of functions.

The print job starts when a file is sent from the computer to the Printer. This file will contain both text and codes for the different settings on the Printer. The codes can be the number of sheets in the book, the line length, margins and so on.
The Printer will calculate the sheet size based on the this information.
The sheet size is then transferred to the Staple and Fold unit, and it will adjust itself to the correct position. Then the motor will start and the printing begins.
Next thing to happen is that the Scrap paper hatch opens so the piece of paper in front of the first sheet will fall into the waste bin.

When it's time to cut the paper, the Printer sends a signal to the S\&F control unit, and the paper holder will lock the paper in place and the cutter will cut the sheet. As soon as the sheet is loose, it will be picked up and transported to the stapling area by the vacuum arm.
This is repeated until the number of sheets per volume is reached. Then the vacuum arm will move to the cover tray and pick up a cover (if cover is selected). The cover is placed on top of the stack of sheets and the stapling and folding take place.

Next, the trap door will open, the book will be ejected and the trap door will close again.

The Staple and Fold unit can be divided into different sections, please see the figure on the previous page.

1. Paper cutter: Cuts the paper, (fitted inside the Printer, controlled from the S\&F unit).
2. Scrap paper hatch: Will open and let the paper waste fall into the waste bin.
3. Picker: Moves the vacuum arm up/down and back/forth.
4. Vacuum arm: Will lift and move the sheets.
5. Sheet splitter: Blows air into the stack of covers to help separate the sheets.
6. Stack holder: Will hold the stack of sheets steady while stapling/folding.
7. Staple anvil: Lifts the stack of sheets up against the staplers while stapling.
8. Stapling: Engages the two stapler machines.
9. Folding: Folds the stack of sheets so it becomes a book.
10. Trap door: A hatch that opens so the finished book can fall out.
11. Eject: A paper guide that will push the finished book out trough the trap door.

7.2 Paper cutter - Adjustment

The paper cutter must be adjusted in the in/out direction to ensure that the top and bottom margins has the correct size. It is done like this: Loosen the four fastening bolts. (There is a position plate on both sides that can be used as a reference if the cutter is to be adjusted outwards. If the adjustment is to inwards the position plates has to be loosened). Move the cutter to the desired position. Fasten the four bolts. Fasten the position plate. Print some test sheets. See the figures on the next page for the correct adjustment.

Adjustment is done in this direction

When the paper cutter is correctly adjusted, the right margin on page 11 has approximately the same size as the left margin on page 4. The edge on the sheet is also aligned with the text.

If the paper cutter is too close to the Printer, the right margin on page 11 is wider than the left margin on page 4.

If the paper cutter is moved too far out from the Printer, the right margin on page 11 will be narrower than the left margin on page 4.

7.3 Paper cutter

Cuts the sheets by running a roller blade across the paper. Is driven by compressed air and is very strong. Take care when doing service and maintenance!

Pneumatics schematic

Electrical information:

Name	Connection	Input/Output
Left sensor	RK17	X21
Right sensor	RK18	X22
Valve V1 12	-	Y20
Valve V114	-	Y21
Valve V2	-	Y22

7.4 Scrap paper hatch

Is a hatch that will open and get rid of the scrap paper that is cut of at the beginning of a print job.

Electrical information:

Name	Connection	Input/Output
Valve V12	-	Y34

7.5 Picking paper

Is the up and down movement of the vacuum arm.

Pneumatics schematic

To adjust the force the arm is
pressing downwards.

Electrical information:

Name	Connection	Input/Output
Sensor pos	RK3	X32
Valve V5	-	Y25

7.6 Vacuum

Is used to lift and move the sheets. The vacuum is made in an ejector placed just beside the vacuum arm. A sensor will discover if the sheet falls off the vacuum arm during the movement.

Vacuum arm with
suction cups

Pneumatics schematic

Vacuum

Electrical information:

Name	Connection	Input/Output
Sensor vacuum	RK4	X33
Valve V11	-	Y33

7.7 Sheet splitter

When the vacuum arm is lifting a cover from the stock, it is also blowing some air into the pile to help separate the sheets. The amount of air in the two nozzles at the sides is controlled by the regulator just behind the cover magazine. The amount of air in the nozzle in the middle is controlled by the regulator on the panel.

Pneumatics schematic
Regulator for the two side nozzles

7.8 Stack holders

Is two cylinders that will move down an keep the stack of sheets aligned until the stapling is done.

Pneumatics schematic

7.9 Staple anvil

Will move up under the stack of sheets and lift the stack up to the staplers. The staple anvil is also forming the staples in the middle of the book.

Pneumatics schematic

Electrical information:

Name	Connection	Input/Output
Sensor neg.	RK8	X37
Sensor flow	RK14	X45
Valve V7	-	Y27

7.10 Folding

After the stack of sheets is lifted up to the staplers and stapled, the folding starts. The stack is folded over the staple anvil. Then the anvil is moved

Electrical information:

Name	Connection	Input/Output
Sensor neg	RK9	X40
Valve V6	-	Y26
Valve V14	-	Y36

7.11 Stapling

Please see chapter 7.25 "Staplers" for more information on the staplers.

The stapling cylinder will move down and up again to engage the staplers.

Pneumatics schematic

Electrical information:

V4

Name	Connection	Input/Output
Valve V4	-	Y24

7.12 Trap door

Opens when a book is stapled and folded. The book will be ejected and slide down trough the opening.

Pneumatics schematic

Name	Connection	Input/Output
Valve V9	-	Y31

7.13 Eject

When the book is stapled and folded, this guide will eject the book trough the trap door. An photocell is placed in front of the cylinder to stop the movement.

Adjust the force

\longleftarrow on the forward movement

Electrical information:

Name	Connection	Input/Output
Sensor stop	RK2	X31
Valve V8	-	Y30

7.14 Valve ramp

7.15 Complete schematic pneumatic

7.16 Components in the control unit

7.17 Schematic, electrical 230V

7.18 Connection to Printer, schematic

The line "Cutting signal" serves three different signal purposes:

1. What size is the sheet.
2. When to cut the paper.
3. What is the last sheet in a book.
4. The size of the sheet is sent as a coded message before the Printer starts. When the Printer receives a file from the computer, the Printer calculates the size depending on the margins and the line length selected. This size information is then sent to the S\&F and it will adjust itself automatically to the correct sheet length.
5. The Printer sends a 120 mS pulse as a cutting signal during regular printing.
6. The Printer sends a 30 mS pulse as a cutting signal when it is ready to cut the last sheet in the book. This will make the S\&F get the cover (if selected) and staple and fold the book.

The line "Alarm to Printer" will send signals from the S\&F to the Printer.
One 5 mS pulse sets the Printer to "ready" mode.
Two 5 mS pulses will pause the Printer.
The line "Motor status" is used in combination with the cutting signal to differ from a regular cutting pulse and sending of the sheet size.

7.19 Schematic PLC

7.20 Schematic signal tower

7.21 Schematic sensors

Sensors paper cutter.

Picker pos., Vacuum sensor

Cover level, Output sensor.

Folding ready, Stackholder neg.

Stapel anvil

Paper roll below minimum diameter.

Stop Eject, Stapling anvil neg.

Door 1 switch.

Door 2 switch.

Stapling position, analog sensor.

7.22 Schematic staplers position

7.23 Schematic pneumatic valves

7.24 Reference position on the vacuum arm.

The arm that moves the paper (and cover) on the S\&F unit must have a reference position to be able to position itself correctly when picking up or laying down paper.

To do this, you must do the following:

1. Turn off the power.
2. Move the vacuum arm to the reference position as shown on the figure below.
3. Turn on the power again.
4. Set the PLC to "Stop" as shown on the figure on the next page.
5. Use e.g. a thin screwdriver to press the switch inside the electric cabinet as shown on the figure on the next page.
6. Set the PLC to "Run".
7. Turn the power off and then back on.

The reference position is now stored inside the servo amplifier, where a battery will make it possible to remember the position even when the power is turned off.

NOTE! The expected battery lifetime is approximately two years, so if the vacuum arm starts

\triangleto need repositioning for no obvious reason, it could be caused by a defect battery. The display on the servo amplifier will show the message "AL 92 " or "AL 9F" when the battery voltage is too low. When replacing the battery, it's strongly recommended that you get an original battery from Braillo Norway AS.

If the decoder cable to the servo motor has been disconnected, the reference position is also lost!

Move the vacuum arm so that it will be positioned like this.

The inside of the cabinet
The inside of the cabinet

Backup battery is placed
under this lid.

7.25 Staplers

The stapling function is being taken care of by two Hohner 43-6 machines. These are quite complex machines, and come with their own manual. The manual is included on the CD at the back of this manual. The stapling is done with $0,5 \mathrm{~mm}$ steel wire.

Please read the Hohner 43-6 manual carefully.

8. PAPER ROLL FEEDER

8.1 Setting up - Connections

The different units should be placed as seen on the figure below.

All units should be aligned so the paper will travel in a straight line

The Paper Roll Feeder may be considered as an independent unit, even though it is switched on and off on the Printer.

The Paper Roll Feeder is also supplied with compressed air. The air is used to keep the paper clamped between the two feeder rolls. There is a timer inside that will release the pressure on the rolls after a certain period of time. This is done to prevent the paper from being deformed around the feeder rolls.

8.2 Operating

To operate the Paper Roll Feeder, the Printer must be "awake" and the emergency switches must be in released (upper) position.

When turned on, the green power lamp will light up and depending on the paper position, the feeder motor may start. The paper feed is controlled by a laser distance sensor and this will always keep a "slack" in the paper between the Paper Roll Feeder and the Printer. The Paper Roll Feeder will automatically feed paper when needed. The paper is feed with a speed depending on the distance from the sensor to the paper. Long distance $=$ low speed, short distance $=$ high speed.

If the emergency stop is activated (pushed down), it has to be reset. The resetting is done by turning the knob like the arrows illustrate, until the knob "pops up" again.

Note! If any work is to be done near or at the feeder rolls, be sure to dis-
 connect the power and the compressed air to prevent injuries.

8.3 Replacement of the paper roll

Shaft and paper roll

Insert shaft
into paper roll

Ready for printing

Put the shaft in the centre of the roll, and ensure that the shaft is approximately in the centre sideways. Fasten the shaft. The roll must be positioned so that the paper is rolled off at the top. (See figure).

Place the paper roll with the shaft already fastened just behind the Paper Roll Feeder. Lift off the correction roll with the friction bar and place aside. Use the crank to lower the roll lift until the lift is below the shaft in the roll. Move the roll forward, make sure that the shaft is situated just above the notches, while turning the crank to raise the roll lift. Turn the crank until the roll is lifted above the floor. Put the correction roll with the friction bar on top of the paper roll like on the figure below. Remove and throw away the first rounds of paper on the paper roll (to get rid of e.g. sand, dust and dirt after rolling the paper roll on the floor).

The paper line must go in between the friction bar and the correction roll. Ensure that the friction bar are resting on top of the roll.
Now the paper must go through the feeder rolls. If turned on, the motor will feed some paper, and the paper can be inserted into the Printer.

8.4 Service and maintenance

Troubleshooting Paper Roll Feeder

The Paper Roll Feeder may be considered as an independent unit, but the Paper Roll Feeder will also supply the Printer and the S\&F unit with compressed air and power.

So if the Paper Roll Feeder is turned off, the two other machines will also be turned off. The same thing applies to the emergency switch, if any of the two is activated, everything will be turned off.

If the Paper Roll Feeder motor does not start, please check the following:
Is the green power lamp illuminated?
If no; Is the main switch turned on ?
Is the Paper Roll Feeder connected to the mains ?
Is one or both of the Emergency switches pressed down?
If yes; Is the paper positioned near the floor, so it is actually in correct position?
Do also note that if the laser distance sensor is not finding anything between 20 cm and 80 cm from the sensors front, the motor will not start. Try to hold a piece of paper in front of the sensor, approximately 30-40 cm away. Now the motor should start.

If the motor starts, but the paper is not moving, check the compressed air supply. The paper Roll Feeder requires compressed air to function.

Maintenance Paper Roll Feeder

The Paper Roll Feeder will not need much maintenance. The bearings are of a sealed type and will not need any lubrication.
The most important thing is to ensure that the rolls are clean and undamaged. Keep especially an eye on the rubber roll. The rolls may be cleaned with a cloth moistened with alcohol.

8.5 Schematic electrical

8.6 Measurements

All measurements in centimetres.

9. GENERAL INFORMATION

9.1 Declaration of conformity

Manufacturer: Braillo Norway as
P.O. Box 93
N-7501 Stjørdal Norway

The manufacturer hereby declares that the Braille Production Printer B 650 SF from serial no: 801001 starting from production year 2011:

Is designed and produced in accordance with the in accordance with the requirement of the European Parliament and Council Directive 2006/42/EC of $29^{\text {th }}$ December 2009, on the approximation of the laws of the Member States relating to machinery as implemented in Norway through Arbeidstilsynets Forskrift om Maskiner of 20 th May 2009 No. 544 (implemented from $29^{\text {th }}$ December 2009) and conforms to the essential health and safety requirements according to the New Machine Directive (2006/42/EC).

Is in compliance with the European Parliament and Council RoHS (Restriction of Hazardous Substances) Directive 2002/95/EC and do not contain any of the six banned substances: lead, mercury, cadmium, hexavalent chromium, poly-brominated biphenyls (PBB) or polybrominated diphenyl ethers (PBDE), in quantities exceeding maximum concentration values.

Is designed and produced in accordance with European Parliament and Council Directive 2006/95/EC of $12^{\text {th }}$ December 2006 on the harmonization of the laws of the Member States relating to electrical equipment for use within certain voltage limits (The Low Voltage Directive).

Is designed for use in Office Environment and Light Industry and that it is designed and produced to comply with the European Parliament and Council EMC Directive 2004/108/EC on the approximation of the laws of the member States relating to Electromagnetic Compatibility.

Tested according to:
EN 55022 (2006) + A1 (2007) + A2 (2010)
EN 61000-3-2 (2006) + A1 (2009) + A2 (2009)
EN 61000-3-3 (2008)
EN 55024 (1998) + A1 (2001) + A2 (2003)
The CE marking is applied from year 2011.
Signed: Stjørdal, $18^{\text {th }}$ November 2011 on behalf of Braillo Norway AS

Managing Director	Terje Magnussønn Watterdal	Name	Signature

9.2 Warranty

This product left the factory in a good working condition in accordance with the technical specifications and carries a warranty of 2 years on parts valid from the date of delivery from Braillo Norway A/S.

The warranty includes:

- Replacement of defect part(s)
- Shipping cost for the replaced part(s)

The warranty excludes:

- On-site part replacement (labour, travelling and living expenses for a service engineer)
- Shipping costs for sending the faulty unit back to Braillo Norway A/S (see below).
- Altered product (except as authorized by Braillo Norway A/S) or product not installed or maintained in accordance with Braillo Norway's instructions.
- Customs and duties
- Incidents involving Force Major (for example flooding, earth quake etc. damaging the product).

Should a replacement part be required, please do the following:

Send us a "Warranty request form". Please refer to the next page to see the actual form. This form can also be found on the enclosed CD-ROM. After completing the form, please return it to Braillo Norway A/S by e-mail, fax or regular mail.
When form is received, the parts will be shipped as soon as possible.

What to do with the defective part(s):

If a communication has been made to our service department, and an approval has been given, it will not be necessary to return the part(s) to Braillo Norway A/S. In all other cases, the part(s) must be returned to Braillo Norway A / S as soon as possible. If the part(s) has/have not been received by Braillo Norway A/S within 2 months from the date of issuing the "Warranty request form", this is no longer regarded as a warranty matter and an invoice will be issued and sent.

Warranty request form

(Only one printer/part per document)

Customer name:		Date:
Contact person:	Fax number:	E-mail address:
Phone number:	Printer number:	
Printer type:	Part number:	
Part name:		

Reason for return:

Comments:

Return to:	Phone number: +4774840440
Braillo Norway A/S	Fax number: $\quad+4774840441$
Wesselveg 1	E-mail:
7500 Stjørdal service@braillo.no Norway	

If this document is not returned within two weeks of origination We will assume that it is not required and it will be cancelled.

Internal use only:	
Garanti?	
Kunde belastes	
Kommentarer på reparasjon	

9.3 Addresses and phone numbers

Web: www.braillo.com

Administration/Sales department Braillo Norway AS:
Office: \quad Storgt. 31, Tønsberg
Mail: P.O.Box 447
3101 Tønsberg
Norway
Phone: $\quad+4733002870$
Telefax: $\quad+4733002871$
e-mail: braillo@braillo.no

Service Braillo Norway AS:

Office: Wesselsveg 1, Stjørdal
Mail: P.O.Box 93
7501 Stjørdal
Norway
Phone: $\quad+4774840440$
Telefax: $\quad+4774840441$
e-mail: service@braillo.no

